
High Speed Networks 

ANALYTICAL ANALYSIS OF ATM SWITCHES WITH MULTIPLE 
INPUT QUEUES WITH BURSTY TRAFFIC* 

Ge Nong, Mounir Hamdi and Jogesh K. Muppala 
Department of Computer Science 

The Hong Kong University of Science and Technology 
Clear Water Bay, Kowloon, Hong Kong 

Email: nong@ieee.org and {hamdi,muppala}@cs.ust.hk 

Abstract 
A queueing model for a novel multiple input-queued 

ATM switch under i.i.d bursty traffic modeled by 2- 
state Markov Modulated Bernoulli Processes (MMBPs) 
is proposed. A Quasi-Birth-Death (QBD) chain is con- 
structed as the underlying Markov chain of the queue- 
ing model. Each input port of the switch maintains N 
separate queues each for buffering cells destined to one 
of the N outputs and an efficient randomized parallel 
algorithm, called parallel iterative matching (PIM) is 
used by the switch to schedule the head-of-line (HOL) 
cells of the input queues out to the output queues. The 
QBD chain is solved by finding the f i e d  point of the 
introduced fixed point equation using an iterative com- 
puting scheme. Interesting performance parameters of 
the switch such as the throughput, the mean cell delay 
and the cell loss probability are derived from the solved 
QBD chain. Numerical results from both the analytical 
model and simulations are presented and the accuracy 
of the analysis is discussed. The queueing model can 
be extended using the same technique to the situation 
where complicated bursty traffic with more states is as- 
serted to the switch. 

1 Introduction 
Each input of an ATM switch scheduled by the PIM 

algorithm maintains N separate queues each for cells 
destined for one of the N outputs. The switch oper- 
ates synchronously and in each time slot the head-of- 
line (HOL) cells at the input queues can be selected 
for transmission across the switch with the constraint 
that at most one cell is able to go from/to any one in- 
put/output link. The performance evaluations of PIM 
switches found in the literature were all based on sim- 

ulations except in [6, 71, where analytical models were 
constructed to study the performance of PIM switches 
under i.i.d Bernoulli traffics and the accuracy of the 
analytical models were verified by simulations. Unfor- 
tunately, most network traffic are known to be bursty 
rather than Bernoulli. As a result, in this paper, we 
develop an analytical model for a PIM switch under 
i.i.d bursty traffics modeled by i.i.d 2-state Markov- 
modulated Bernoulli Processes (MMBPs) [l]. Numeri- 
cal results show that our analytical model work quite 
well and can be used as an efficient tool to evaluate var- 
ious performance parameters of the PIM switch such 
as the cell loss probability which can be very time- 
consuming and sometimes impossible to obtain by sim- 
ulations. 

The remainder of this paper is organized as follows. 
In Section 2 the queueing model is proposed for a 
PIM switch with bursty traffic and a QBD underly- 
ing Markov chain is constructed. In addition, the QBD 
chain is solved by a fixed point iterative method. In 
Section 3 comparisons of the numerical results from the 
queueing model with the results of simulations are pre- 
sented. Finally, a conclusion is given in Section 4. 

2 Queueing Model and Analysis of the 
PIM Switch 

For sake of simplicity and clarity, we apply the anal- 
ysis in this paper to a modified PIM algorithm which 
is logically equivalent to the original PIM algo- 
rithm, instead of using the original PIM algorithm di- 
rectly. The detailed descriptions for the original PIM 
scheduling algorithm and its modified logically equiv- 
alent counterpart as well as the proof of their logical 
eauivdence for our DurDoSe can be found in 12. 71. In 
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essentially the same in the context of this paper. 

2.1 Queueing Model 
A number of assumptions are made for developing 

the queueing model of the PIM switch: (1) The switch 
operates synchronously; (2) Every input queue has the 
same buffer size, namely bi;  (3) New cells arrive only 
at the beginning of the time slots and cells depart only 
a t  the end of the time slots; and (4) Cells arrive at 
each input according to  an ON-OFF bursty process [l] 
modeled by the 2-state MMBP. In this process cells are 
only generated in ON(1) state and the destinations of 
cells are uniformly distributed over all outputs. Only 
one cell can arrive at each input in a time slot. Times 
spent in states of ON(1) and OFF(0) are geometric with 
means of (1 - a)-' and (1 - p ) - l ,  respectively. For an 
N x N switch, if an input's load is NA, then every queue 
at this input has an offered load of A. Given the mean 
burst length T and the mean arrival rate A, a and p 
can be calculated as a = 1 - $ and ,8 = '-:?:La), 
respectively. 

Holding the above assumptions, all the input queues' 
stochastic processes will be the same when the system 
attains equilibrium steady states. We refer to a queue 
at input i with output j as the destination by Q(i,j). 
Figure 1 shows an example of the queueing model for 
the PIM switch. In this example the occupancy of 
Q(1,l) is taken as the tagged input queue, the num- 
ber of HOL cells at input 1 is represented by the 1st 
HOL input queue, and the number of HOL cells ad- 
dressed for output 1 is denoted by the 1st HOL output 
queue. Both the HOL input queue and the HOL out- 
put queue are virtual queues which don't exist in a real 
PIM switch but are used in our analysis to represent 
the cells participating in the two stages' contentions of 
the PIM scheduling algorithm. Without loss of gener- 
ality, Q ( i , j )  is assumed to be the tagged input queue in 
the rest of this paper. 

2.2 Underlying Markov Chain 
The queueing model is analyzed by constructing an 

underlying Markov chain 2 which states are sampled 
at the end of each time slot and each state is expressed 
as a 4-tuple ( L ,  G, Wi, WO),  where L,  G,  Wi, and WO 
refer to the length of the tagged input queue, the state of 
the traffic source at the tagged input queue, the length 
of the virtual HOL input queue, and the length of the 
virtual HOL output queue, respectively. The state space 
of this four-dimensional Markov chain is 

{ ( O , g , O , O ) ,  ( z ,g ,WirWo)  I 1 I1  I bi,O I 51, 
15 W i  5 N,1 5 W O  5 N }  
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Figure 1: An example of the queueing model for the 
PIM switch. 

and are ordered in a lexicographical or- 
der, that is, (O,O,O,O), (O , l ,O ,O) ,  ( l , O , l , l ) ,  ..., 
(bi,O,N,N), (bi,l,N,N). The set of states 
{(Z,O,l,l),(Z,l,l ,l) ,... (Z,l,2,2) ,... (Z,l,N,N)} will be 
labeled as states in level 1 of the Markov chain. The 
Markov chain 2 is a so-called QBD process with a 
block-partitioned form of transition probability matrix 
as follows: 

1 I T =  I 0 0 0 ... 0 0 Do D1 

0 A0 A1 A2 0 
. .  . .  . .  

. . .  . . .  . . .  . . .  
0 0 0 0 A0 Ai A2 

where C1[1,1IT + C2e = [1,1IT and CO + (A1 + 
A2)e = (A0 + A1 + A2)e = (DO + D1)e = e,  
e is a column vector of ones of length 2 N 2 .  Let 

resp.) denote the probability that the HOL cell of the 
Pbl0,Wt (4 , W b ) l ~ t - l ( g , W i  ,WO) (P;lo,wt(W: ,W;)lW,-I (g,Wi , W O ) '  

(PsIuc,Wt (W:  ,wb) IWt-1 (g,w; , W O )  7 resp.) denote the proba- 
queue Q(i, j )  is blocked, and Psuc,wt ( w : , w ; ) l ~ t - l  (g,w;,w,) 

bility that the HOL cell of the queue Q(i,j) is trans- 
mitted given that (i) there is(isn't, resp.) a new cell 
arrival at the queue Q(i,j) at the beginning of the cur- 
rent time slot; (ii) at the end of the last time slot, the 
traffic source at input i is in state g and the lengths of 
the virtual HOL input and output queues are wi and 
w,; (iii) at the end of the current time slot, the lengths 
of the virtual HOL input and output queues are w: and 
wb. For the first case of (i), i.e., there is a new arrival 
cell at the tagged input queue at the beginning of the 
current time slot, we define six matrices B(g), BP) and 
~ ( 9 )  ( g  = o or g = 1) as: 
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p 1 - p -  Bt)el 
c1= [ 

H1 S'(1) - H1 
Ho S'(0) - Ho 

B(0) 

AO= [ 
Go S(O) + B'(O) - Go 

= [ G1 S(1) + B'(1) - G1 ] = [ zz B(1) ] 
H1 s(1) + S'(1) - HI ' 
Ho $0) + S'(0) - Ho 

G1 B(l) + B'( 1) - G1 
Go 

1 Do= [ 
D1= [ B(O) + B'(0) - Go 

where el is a column vector of ones of size N2, z,/zc 
is a row/column vector of zeros of length N2, z, is 
an N2 x N2 matrix of zeros and Ho = a, HI = wl Go = and G1 = w. 

putation of the success and blocking probabilities 

p&Wt(w:,w;)lWt-l (g,w.,wo) 1 pblo,Wt(w:,wb)lWt-l (g,w.,wo) 
and pho,wt(w:,wb)l wt-1 (g,w, ,WO)  7 respectively. Provided 
that these probabilities are computed, the transition 
probability matrix T can be constructed. Once the 
transition probability matrix is known, it is a rou- 
tine matter to  derive the steady state equations by 
utilizing the properties of Markov chains, and solv- 
ing the equations to obtain the steady-state prob- 
ability vector. The steady state probability vec- 
tor of the Markov chain 2 is given by II = 
[T(O,g), T(1,g)r * * * I T(l,g), * .  * 1 T(b.,g)l where every element 
T(l,g) = b(l,g,l,l), T(l,g,1,2), * f * , T ( l , g , N , N ) ] ,  > 0 is a row 
vector of size N2, except that ~ ( 0 , ~ )  is a scalar. For 
the steady state probabilities in level 1 ,  we denote it 
by Tl = [~(l,O),~(l,l)lI where T(l,O) and T(l,l) are two 
probability vectors for the traffic source at input i in 
stage 0 and 1. Furthermore, we let = n(l,g)el and 
To = T ( 0 , O )  + T(0,l). 
2.3 Solving the Markov Chain 

we defined above, i.e., psuc,wt (w: ,wb) I wt-1 (g,wi ,WO)  1 

- 

We now derive the equations for computing the block- 
ing probability, Pblo,Wt(w:,wb)lWt_l(g,w.,w,) and the sue- 
cess probability1 ~,,c,wt(w:,Wb)lWt-l(g,w,,wo). The tran- 
sition of the state of the virtual HOL input/output 
queues from the state (wi,wo) to  state (wi,wA) is a 
two-step process as illustrated in Figure 2: (i) First, we 
account for the number ( k i , k o )  of the newly arriving 
HOL cells to the virtual HOL input/output queues; (ii) 
Then, we consider the transition from the intermediate 
state (h i ,  ho) to the final state (wi, wb) after applying 
the PIM algorithm. 

Due to the space limit here, we omit the detailed 
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can be derived with some efforts [6, 71. Consequently, 
the steady state probabilities of Z are given by: 

Arriving HOL Cells 

At : A cell time slot 

1 Apply PIM algorithm to r1co + nocl = no 
find maximal matching time /I\ / A f  bi i 

ro([1, I ]*  + JJ a je )  = 1 Mi. W"I f4,4, fw;, yJ 
Remaining HOLcells HOL cells at the Remaining HOLcells i=l j=1 
at the end o f f -  A f  beginning off at the end o f f + A f  

i 

(4) 
Figure 2: Transition of the virtual HOL queues. 

ri = TO JJ  CY^, f OT 1 5 i 5 bi .  
j=1 

where ai is given as 

A2(1 - W - l ,  

procedure of deriving these transition probabilities. We 
will focus only on the basic idea of our solution for the 
computation of these probabilities. To utilize the con- 
cept of a tagged queue, the condition of independent 
and identical components must be satisfied. Studies 
indicate that such an assumption is reasonable for the 
moderate or large size input-queued switches under i. a .  d 
traffics [6,7] . Here we make the same assumption, that 
is, when a cell arrives at an empty queue Q(i,  j ) ,  it will 
automatically observe another j t h  queue being empty 
with Bernoulli probability PO and another queue in in- 

introduction of po plays an essential role in the solution 
of the Markov chain . However, the difficulty is that 

rameters, such as the switch size, buffer size and traffic 
load. Instead of assuming po as a known parameter, we 

the known system parameters [5]. Eq (1) gives the fixed 
point equation. In particular, we prove a lemma which 

for i = bi; 

(5) 
A ~ ( I - A ~ - c Y ~ , D ~ ) - ~ ,  f O T i z b i - 1 ;  
Az(1 -  A1 - ~ ~ i + l A o ) - ' ,  for i E [2, bi - 21; 
C2(1 - A1 - azAo)-', for i = 1. 

ofmatrice% Eq ( 5 )  are functions 
Of r ( O L Y ,  r ( O , l ) r  r(l,o) and r(1,1)* This naturally SUg- 

*(OyO) and r ( O J )  are set to be 0.5(1 - A), which 'Or- 

responds to the cases that there is no new arriving cell 

'lot, and both and are approximated by 
O a 5 ( l  - N - l ) A ( r ( o , o )  + r ( ~ , l ) ) .  Then the next ~ ( o , o )  

and Eq (3)* the new r1 is computed by 
Eq (4). As observed from our experiments, the con- 

ro can be attained within 15 iterative computations in 

The 

put i being empty with Bernoulli probability The gests an iterative [3, 6 ,  71. Initially, both 

po can't be directly derived from the known system pa- at the tagged Queue at the beginning Of a time 

use the fixed point iterative method to obtain po from and *(RI) are Obtained by finding the root for Eq (2) 

states that a fixed point for Eq (I), given below, exists. verging rate is quite high and an accuracy Of for 

Lemma 1 A fixed point exists for Eq ( 1 )  in the interval 
lo, 11. 

Proof: Let the measure derived from the Markov chain 
be the probability PO. We know that both CY and P 
are constants. According to  the Rules (1) and (4) of 
THEOREM 2 in [4], a fixed point exists. In addition, 

Thus, the fixed point must exist in interval [0, 11. 

Given PO, the formula for the probability of the vir- 
tual HOL queue's transition from (h i ,  h,) to (wi, w,) 
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most of cases. 

2.4 Computing the Performance Metrics 
So far, we have solved the underlying Markov chain 

of our queueing model for the PIM switch. From the 
symmetry property of the model, some interesting per- 
formance parameters of other input queues, such as 
- throughput p, mean queue length v, mean cell delay 
D and mean cell loss probability Pl,,, are the same as 
which given below for the tagged input queue: 

p = [ T ( O , O )  (A0 - $)e l )  + X ( 0 , l )  ( A 1  - B61)edl 
+ ~ P ~ ~ [ n c , , o )  ( ~ ( ' 1  + S ' ( O ) )  + r(,,1) ( s ( ~ ) +  ~ ' ( l ) ) l e l  
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3 Numerical Results 
Both mathematical analysis and simulation results 

are presented in this section in order to investigate the 
accuracy of the above queueing model and to evaluate 
the performance of the PIM switch under bursty traffic. 
Figure 3.(a), (b) and (c) show the switch throughput, 
mean cell delay and mean cell loss probability as func- 
tion of offered load with a mean burst length of 8 cells 
for an 8 x 8 PIM switch with various PIM scheduling it- 
eration numbers 1, 2 and 3, respectively. For the mean 
cell loss probability, simulation results are given only 
in case of the switches being overloaded under given 
system configurations so that the results obtained by 
simulation are reasonable. It can be seen from these 
figures that the mathematical analysis results closely 
approximate the simulation results. Noticeable devia- 
tions between the analysis and simulation appear only 
in cases where the switch with multiple iterations is 
overloaded. 

4 Conclusion 
The presented analysis provides a unifying framework 

to build queueing models for PIM switches. In addition, 
the queueing model can be extended using the same 
technique to the situation where complicated bursty 
traffics with more states are asserted 6 the switch. Re- 
calling our previous work in [6, 71, we conclude that our 
suggested queueing model works well not only in case 
of the i.i.d Bernoulli traffic, but also in case of the i.i.d 
burst traffic where the cells’ arrival process is correlated 
in a long term. 
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(a) Throughput 

m 

(b) Mean cell delay 

(c) Mean cell loss probability 

Figure 3: The throughput, mean cell delay and mean 
cell loss probability of an 8-by-8 PIM switch with buffer 
sizes bi = 32, as a function of offered loads with mean 
burst lengths T = 8. 
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